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Abstract—A Short Message Service (SMS) is a tool for personal
communication systems using ubiquitous telephone networks.
SMS also has been used for sharing information between in-
telligent devices, but the transferable payload size of a single
SMS message is limited and can constrain its application. For
example, when sharing context information between devices, a
message size of more than 140 bytes needs be divided by the
sender and reassembled by the receiver to fit into SMS messages.
Although efforts have been made to reduce the context size
using compression algorithms, their effectiveness is unreliable
and their size reduction is, in many cases, not enough. We
present SEMS (Size Efficient Messaging System) to reduce the
footprint of context information to overcome this limitation. Using
a probabilistic data structure, SEMS can significantly increase
context representation size. SEMS also uses SMS to deliver the
encoded message with far less overhead. Despite a slight potential
decrease in data quality, our system and findings are shown to
facilitate the sharing of context information in a highly size-
efficient manner.

I. INTRODUCTION

A Short Message Service (SMS) system is a popular tool for
personal communication systems using ubiquitous telephone
channels [1]. With the introduction of mobile devices, SMS
has become one of the most frequently used systems of
communication. Many services are integrated with the SMS
system to enhance its usability: banks use SMS to send code
to users to enhance security, hospitals use SMS to check
doctors’ appointments, and restaurants send SMS messages to
confirm dinner reservations. The Internet of Things (IoT)[2]
has introduced another usage of SMS: SMS messages are used
to share context information among devices [3].

Context is any kind of information to represent a status of an
entity[4][5]. Context awareness[6] is a critical part of pervasive
computing including IoT[7] because intelligent system can
make use of the context information to benefit users. Due to
its ability to send text messages that both devices and humans
can read and process, SMS is one of the simplest and effective
ways of sharing context information [3].

However, SMS has constraints that restrict its capability as
an effective communication system [1]. The payload size that
SMS can transfer is limited: a maximum of 140 bytes can be
used for a single text message within an SMS system. This size
limitation is relatively innocuous when people share personal
information with others, since a longer message gets split into
multiple sub-messages without any practical problems. For
context sharing among devices, however, the splitting, dis-
tributing, and combining of one context into multiple smaller

contexts may introduce unnecessary complexities. Although
reducing context size using compression can be a solution
to this issue, size reduction using compression is effective
only when the bit-pattern in the context message is regular.
Therefore, one cannot guarantee the size reductions using
compression algorithms.

In this paper, we present SEMS (Size Efficient Messag-
ing System) to address this issue. SEMS uses probabilistic
data structures to reduce the footprint of context informa-
tion. Specifically, Bloomier Filters [8] are used to encode
and decode context information. Furthermore, we use Folded
Bloomier Filters (FBFs) [9] to overcome the limitation of
Bloomier Filters, which restricts the size of values’ encoding
and enhances the size reduction rate even further. This dra-
matically eases the single message size constraints inherent to
SMS communication systems.

However, probabilistic data structures have false positive
probabilities that can lead to the possibility of misinterpreta-
tion of the encoded data when recovering original information.
In this research, we shows that how we can manage the false
positive probabilities of SEMS to be low enough to be used
in context sharing using SMS systems.

Our contributions in this paper are as follows:
• We propose SEMS, which can overcome the payload lim-

itation of a typical SMS system through the application
of probabilistic data structures.

• We assess the benefits and challenges of using the SEMS
by measuring both the size reduction efficiency and false
positive probabilities when using SEMS.

• We demonstrate how SEMS can be used to share different
types of context information flexibly and size-efficiently.

The rest of this paper is organized as follows: we explain
related work in Section II. Then we introduce the theoretical
research, concepts, and architecture of SEMS in Section III.
In Section IV we show the experimental results by comparing
how the original data in JSON format can be shared in a size-
efficient manner using SMS with little or no degradation of
data quality. Section V concludes this paper.

II. RELATED WORK

Standardization of communication between devices is one
of the largest challenges facing pervasive computing [10].
The universality of SMS offers the infrastructure necessary to
facilitate the easy implementation and high dependability of
inter-device communication [1]. Despite these strengths, SMS



has a limit of 140 bytes [3]. If an SMS exceeding this size
is sent, it can be segmented into multiple (multipart) SMS
messages that can arrive at the receiving device in any order
to be then properly reordered. However, this approach using
multipart message can complicate the process of encoding and
decoding the original message, as it introduces the partitioning
and necessary reordering of the original message when sending
the multiple sub-messages. Furthermore, this process is a
source of potential problems since JSON [11], a commonly
used text format in inter-device communication, can easily
exceed 140 bytes [11].

Efforts have been made to reduce the size of context infor-
mation in a number of ways. Compression is popularly used in
the encoding of message subsections. Encoding scheme types
vary greatly in that they target different subsets of the original
message. Our study [9], we showed that the zip compression
method that uses Huffman coding [12] can reduce the footprint
size of context information.

However, context information size can be further reduced
using probabilistic data structures. Bloom Filters [13] map
input to binary values—-true or false—-to reduce the set
associations. Bloomier Filters [8] are a generalization of
Bloom Filters, with the introduction of a table to store various
values that require more than simple set associations. Folded
Bloomier Filters (FBFs) were introduced to overcome the
limitation of Bloomier Filters [9], [14]; Bloomier Filters use
a fixed size table that not only limits the maximum bit-width
of the stored values, but also wastes the table space when
the stored values have shorter bit-width than the table width.
Using FBFs, we can use any type of information including
strings, integers, and floating point numbers. It was shown
that FBF can achieve a size reduction of up to 87.42% in
context footprint size with a near zero false-positive rate [9]
When we consider the relationships among entities, the false-
positive rate can be even further reduced [15].

III. SEMS ARCHITECTURE

The SEMS architecture uses an intelligent algorithm to
enhance the usability of SMS. Fig. 1 shows an overall ar-
chitecture of SEMS. The SEMS architecture assumes JSON
is being used to share context information as in 1 and 11 .
The JSON format is flexible and simple with its dictionary
structure that maps keys (e) to values (f(e)). JSON uses text
for both keys and values. As a result, the footprint for data
representation using JSON tends to be large, especially when
the schema (the structure of keys) is complex and lengthy.

This example shows an example of context information
represented in JSON format to be shared using SMS.

{
"date": [15, 10, 11],
"latitude": [30, 25, 38, 5],
"longitude": [-17, 47, 11, 0],
"temp": 91

}

When the size footprint of the JSON is more than 140 bytes,
the context information cannot be shared without splitting the
JSON into smaller JSON sub-files in normal cases. However,
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Fig. 2: BF/FBF Encoder and Decoder Process

this division of representation of context information requires
rules and algorithms for the proper segmentation of JSON files.
Furthermore, these partial JSON files should then be combined
and their final representation validity should be verified upon
delivery. These added difficulties can add unnecessary burden
when sharing context information. The SEMS encoder 2 uses
probabilistic data structures, i.e., FBF, to address this issue.

Bloomier Filters encode a pair of (key, value) information
into a table. The first diagram of Fig. 2 shows their encoding
process [8]1. Bloomier Filters have a table of size m by q: m
is the number of table rows, and q is the maximum width of
any associated value. This table has a constraint m ≥ n where
n is the number of stored key value associations (e, f(e)). To
reduce the table size even further, we can introduce m bits

1The diagrams in Fig. 1–4 are from our previous work [9]



of an array to indicate which table rows are occupied. This
makes the footprint of (q × n) + m. Compared to the JSON
footprint size, this table size provides a great size reduction.
FBF further reduces the table size by folding the table.
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Fig. 3: BF table without folding

Fig. 3 shows a Bloomier
Filter table example with
three values of different
types: {"name":"Jim",
"age":7,
"time": 12,00}.
The time is encoded into
two bytes of data (0x03, 0x00). The string value of “Jim”
becomes (3, ‘J’, ‘i’, ‘m’); The first value 3 indicates the
length of a string. The grayed bytes show prepended zeroes,
which add unnecessary table space.
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Fig. 4: FBF ta-
ble with fold-
ing

Fig. 4 shows the same values folded twice
into a table of width one byte width. FBF
uses the same data structure, encoding, de-
coding algorithms, and table at its core, but
pre-processes the associations of (e, f(e)) to
reduce the table size [9].

FBF does not store a schema of the
JSON representation to reduce the informa-
tion footprint. The value that matches a key
is stored in one of the locations that the Hash
(H(e)) function generates. In this example,
out of the three generated locations, the
2nd hash output (h2 = ρ(e)) becomes the
location where the f(e) is finally stored after
(1) it is prepended, (2) XOR’ed (exclusive or) with M(e), and
XOR’ed with the table values that h1 and h3 point to.

This can be a problem, in terms of flexibility, when we
recover the JSON from the SEMS, as the receiver cannot
retrieve values without the schema information from the
sender. Another problem when we use FBF probabilistic data
structures is the possible false positive probability, where the
key that is not a part of schema wrongly generates a value
that is accepted as a valid one. As an example, the second
diagram of Fig. 2 shows a decoding process where any random
locations from key e can be XOR’ed to generate a value f(e)
that might be accepted as a valid information. This can be
another problem, in terms of data quality, when we recover a
wrong JSON representation from the transferred SEMS format
using SMS messages.

To address the first issue—the flexibility problem—the
SEMS encoder uses frequently used keys, and these keys are
already shared between a sender 3 and a receiver 9 . In a
scenario where we should share a key-value pair whose key is
not a member of shared keys, we keep a record of non-shared
keys 4 and send them over a SMS communication channel 6
as a part of the SEMS format 5 7 . The shared keys 9 of the
receiver are used to recover JSON representation 11 . When
the SEMS format 7 includes the non-shared key, they are also
used to reconstruct JSON representation 10 by the SEMS
decoder 8 . This approach not only reduces the information,
but also enables sharing information flexibly.

To address the second issue—the data quality problem—
SEMS uses various types of filters to remove false positives.
As innate filters, prep, M(e), and trunc(x) functions in
BF/FBF decoder and encoder are used to reduce the false pos-
itive probability. Additionally, correlational filters can reduce
the false positives dramatically. As an example, to constitute a
location, we need both ‘latitude’ and ‘longitude’ information.
Using this correlational information, we can more accurately
detect if the location information recovered from a SEMS
format is false positive or not. The probability that both
‘latitude’ and ‘longitude’ are false positives becomes signif-
icantly lower [15] than the probability where only ‘latitude’
or ‘longitude’ information is false positive. Further, we can
enhance the data quality by filtering out the invalid data from
situational information [9].

IV. EXPERIMENTS

In this section, we use three different scenarios to assess
the performance of SEMS both in size reduction and data
quality (false positive probabilities). The size reduction rate
shows how much SEMS can communicate information in a
size-efficient manner, and data quality shows how the SEMS
format can retain its quality.

In the first scenario (EMS), a person calling emergency
medical services to pick them up from their home and transport
them to the hospital uses a biotech sensor patch to take a
set of their vital signs and sends SEMS so that emergency
medical services personnel can have a better understanding of
this person’s condition prior to being on the scene.

{
"name": "William",
"date": [15, 10, 11],
"past medical history": "Cardiac arrest",
"medications": "Clonazepam",
"heart rate": 85,
"blood Pressure Systolic": 135,
"blood Pressure Diastolic": 85,
"sp02": 95,
"respirations": 12,
"allergies": "sulfa drugs",
"latitude": [-17, 47, 11, 0],
"longitude": [-17, 47, 11, 0]

}

In the second scenario (weather), a ship is sent a weather
report specific to its location that updates it on the condition
of the water and current climate.

{
"date": [15, 10, 11],
"latitude": [30, 25, 38, 5],
"longitude": [-17, 47, 11, 0],
"temp": 91,
"significant wave height": 12,
"swell height": 30,
"swell period": 41,
"swell direction": "west",
"tide data": 18,
"wind speed": 16,
"visibility": 50,
"unique weather condition code": "TG188",
"weather description": "stormy",
"pressure": 43,
"cloud cover": "humidity",
"water temp": 43,
"humidity": 70,
"max temp": 95,
"min temp": 70

}



In the final scenario (farming), a farmer has placed down
a number of sensors in a field to monitor changes in soil
acidity across specific predetermined sectors of the field. The
farmer receives each sensor’s individual reading as well as an
indication of the crop being grown in the specific sector.

{
"time": [11, 21],
"date":[15, 10, 11],
"field health index": 85,
"sensor group": "soil ph",
"sensor 1 location": 5,
"sensor 1 crop": "soybeans",
"sensor 1 value": 5.9,
"sensor 2 location": 3,
"sensor 2 crop": "barley",
"sensor 2 value": 43,
"sensor 3 location": 1,
"sensor 3 crop": "wheat",
"sensor 3 value": 6.8,
"sensor 4 location": 2,
"sensor 4 crop": "sorghum",
"sensor 4 value": 5.7,
"sensor 5 location": 7,
"sensor 5 crop": "soybeans",
"sensor 5 value": 43,
"sensor 6 location": 4,
"sensor 6 crop": "barley",
"sensor 6 value": 6.8,
"sensor 7 location": 8,
"sensor 7 crop": "soybeans",
"sensor 7 value": 5.7

}

In each of the scenarios listed above, the intended message
is much greater than a single SMS message’s 140 byte limit.
Therefore, unless otherwise specified, SEMS encodes the data
representation and yields a binary message of a size smaller
than the SMS limit. This is then decoded via SEMS on the
receiving device for queryable access to the data representation
and, thus, foregoing the complex partitioning and reordering
of a multipart SMS message.

Although the shared schema should cover the majority of
cases, if the sending device wants to add a key to the receiving
device’s schema, then SEMS would allow a user to send a non-
shared part of the schema (ie. a new key) in addition to the
expected data representation according to the shared schema.
Further experimental comparison was done to determine the
effects of sending additions to the schema that were not
previously shared using the example scenarios and respective
JSON data above.

As an example of this dynamic schema addition, consider
the second scenario regarding the weather report. If a vessel is
looking for location-specific information regarding the waters,
then local authorities can update the schema by sending the
ship the originally requested for weather report data represen-
tation and a schema addition such as restricted areas, ports of
interest, where fuel can be bought locally, or a notification
of dangerous areas. In this way, the limitation inherent to
only sending encoded data representation of previously shared
schema is overcome with the ability to send this non-shared
key in addition to the encoded data representation sent.

Table I shows the size reduction rate of the three given
scenarios assuming a shared schema between the sender and
receiver in comparison to the size reduction rate achieved
via Zip compression. Table II shows the size reduction rate

of three scenarios assuming a shared schema between the
sender and receiver with the addition of a key not in the
previously shared schema in comparison to the size reduction
rate achieved via Zip compression.

TABLE I: Reduction rate (%) using shared keys

EMS Weather Farming

Size Rate (%) Size Rate (%) Size Rate (%)

Original 284 0.0 384 0.0 563 0.0
Zip 185 34.86 246 35.94 192 65.90

SEMS 80 71.83 75 80.47 129 77.09

TABLE II: Reduction rate (%) using shared and non-shared
keys

EMS Weather Farming

Size Rate (%) Size Rate (%) Size Rate (%)

Original 288 0.0 388 0.0 567 0.0
Zip 185 35.76 249 35.82 199 64.90

SEMS 84 70.83 79 79.64 133 76.54

The false positive probability of FBF depends on various
factors such as the table width or the data type of a value.
Table III shows false positive probability examples of various
data types [9], [15]. fpinnate is the false positive probability
that each type innately has, and fpcorrelate is the probability
where the type has a correlation with other types. As an
example ‘Lattitude’ has a relationship with ‘longitude’ to
specify a location. So, The fpcorrelate is significantly lower
than fpinnate. Likewise, ‘time’ data type needs ‘date’ type to
specify exactly when an event is occurs. From our previous
research [15], the theoretical fpcorrelate is too low to detect
in a real-world situation when the schema have a relationship
among themselves.

TABLE III: False positive (fp) probabilities (FBF)

Type fpinnate (%) fpcorrelate (%)

theory exp. theory exp.

Boolean 0.39 0.38
Latitude 1.5 1.5 0.045 0.051

Time 2.2 1.9 0.12 0.11

The false positive probability of a string is calculated from
the fact that a series of random bits can be decoded into a
valid string. We showed that 1/256×αn′ × 1−α(256−n′)

1−α is the
false positive probability of a string, where n′ is the minimum
allowable string length, and α = 95/256 is the ratio of ASCII
printable characters to non-printable ones [9]. This results in
the 0.085% with n′ = 2 and 0.0043% with n′ = 5. When you
use a string for representing numbers only, the probability even
drops to 8.17×10−4 with n′ = 2 and 7.30×10−8 with n′ = 5.

The false positive probability of SEMS also depends on
various factors including data types, filters, and table width.
When a false positive rate of ith pair (key, value) in SEMS
format is fpi, we can calculate the maximum false positive



Scenario n′ max fp (%) min fp (%)

EMS 2 0.34 5.56× 10−30

5 0.017 5.95× 10−68

Weather 2 0.35 7.68× 10−52

5 0.017 1.62× 10−118

Farming 2 0.69 2.33× 10−62

5 0.03 2.12× 10−142

TABLE IV: Fasle positive probability (%) using only string
types

probability as
∑
i (fpi) when each member has no relationship

among themselves (and thus fpcorrelation = fpinnate). When
all of the members have relationships among themselves, the
minimum false positive probability is Πi(fpi).

Table IV shows the maximum and minimum false positive
probabilities. Both for the cases where the minimum string is
2 (n′ = 2) and 5 (n′ = 5), we have significant size reduction.
For the false positive probabilities, even though the max false
positive probabilities look somewhat high in theory. However,
in reality, most of the false positive strings are unreadable
and random, e.g., “IxP zp” or “zPAkxp”, so we can easily
remove them to reduce the probability to practically zero. The
minimum false positive probability is astronomically small.
This experiment shows that we can practically reduce false
positives by introducing simple relationships among entities
or by making minimum string lengths large.

V. CONCLUSION AND FUTURE WORK

SMS messages have a single message size limitation that,
when exceeded, partitions the message’s contents into multi-
ple sub-messages. This leads to increased complexity when
sharing encoded data representation between devices.

In this work, we propose a system used to share context in-
formation of different types in a size-efficient manner between
devices. We propose SEMS and reveal its novel approach to
largely overcome the size limitation inherent to SMS systems
via the application of probabilistic data structures. We show
the size reduction achievable when using SEMS given different
types of context information, and we quantitatively analyze the
false positive probability inherent to the system. To improve
upon our work, we plan the implementation of an enhanced
system of larger scope with the infrastructure and interfaces
necessary to support the sharing of context information in a
real-world environment.
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